Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 416
Filtrar
1.
J Endocrinol Invest ; 45(3): 527-535, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34550535

RESUMO

AIMS: The aim of the study was to determine how the administration of a high-fat diet supplemented with various forms of chromium to rats affects accumulation of this element in the tissues and levels of leptin, ghrelin, insulin, glucagon, serotonin, noradrenaline and histamine, as well as selected mineral elements. METHODS: The experiment was conducted on 56 male Wistar rats, which were divided into 8 experimental groups. The rats received standard diet or high fat diet (HFD) with addition of 0.3 mg/kg body weight of chromium(III) picolinate (Cr-Pic), chromium(III)-methioninate (Cr-Met), or chromium nanoparticles (Cr-NP). RESULTS: Chromium in organic forms was found to be better retained in the body of rats than Cr in nanoparticles form. However, Cr-Pic was the only form that increased the insulin level, which indicates its beneficial effect on carbohydrate metabolism. In blood plasma of rats fed a high-fat diet noted an increased level of serotonin and a reduced level of noradrenaline. The addition of Cr to the diet, irrespective of its form, also increased the serotonin level, which should be considered a beneficial effect. Rats fed a high-fat diet had an unfavourable reduction in the plasma concentrations of Ca, P, Mg and Zn. The reduction of P in the plasma induced by supplementation with Cr in the form of Cr-Pic or Cr-NP may exacerbate the adverse effect of a high-fat diet on the level of this element. CONCLUSION: A high-fat diet was shown to negatively affect the level of hormones regulating carbohydrate metabolism (increasing leptin levels and decreasing levels of ghrelin and insulin).


Assuntos
Metabolismo dos Carboidratos/fisiologia , Cromo , Dieta Hiperlipídica , Grelina/sangue , Leptina/sangue , Serotonina/sangue , Animais , Cromo/administração & dosagem , Cromo/metabolismo , Cromo/farmacocinética , Dieta Hiperlipídica/efeitos adversos , Dieta Hiperlipídica/métodos , Suplementos Nutricionais , Glucagon/metabolismo , Insulina/sangue , Norepinefrina/sangue , Ratos , Distribuição Tecidual , Oligoelementos/sangue , Oligoelementos/classificação
2.
Contact Dermatitis ; 85(4): 415-420, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34013976

RESUMO

BACKGROUND: Allergic contact dermatitis to metals is diagnosed by applying a metal salt in a patch test. The bioavailability of the metal salt might depend on the choice of metal salt, the concentration, sweat composition, and pH. OBJECTIVES: The main purpose of this study was to apply chemical speciation modelling, which is based on experimentally derived input data and calculates the concentrations of chemical forms (species) in solutions, to reproduce and discuss clinical patch test results of aluminium and chromium. METHODS: Joint Expert Speciation System (JESS), Hydra/Medusa, and Visual MINTEQ were employed to study the bioavailable fraction and chemical form of clinically applied aluminium and chromium salts as a function of salt type, applied concentration, sweat composition, and pH. RESULTS: Investigated aluminium and chromium salts can have a very low bioavailability with a large dependency on sweat composition, pH, metal salt, and concentration. Both aluminium and chromium ions could shift the pH towards acidic or basic values based on their chemical form. CONCLUSIONS: Reported seasonal and interpatient variability in positive reactions to aluminium is likely related to sweat pH and composition. Potassium dichromate increases the pH, whereas aluminium and trivalent chromium chloride strongly decrease the pH, possibly increasing skin diffusion.


Assuntos
Alumínio/administração & dosagem , Alumínio/efeitos adversos , Cromo/administração & dosagem , Cromo/efeitos adversos , Dermatite Alérgica de Contato/diagnóstico , Testes do Emplastro/métodos , Alumínio/farmacocinética , Disponibilidade Biológica , Cromo/farmacocinética , Dermatite Alérgica de Contato/etiologia , Humanos , Concentração de Íons de Hidrogênio , Suor/química
3.
Molecules ; 26(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809305

RESUMO

Plant growth-promoting rhizobacteria (PGPR) mediate heavy metal tolerance and improve phytoextraction potential in plants. The present research was conducted to find the potential of bacterial strains in improving the growth and phytoextraction abilities of Brassica nigra (L.) K. Koch. in chromium contaminated soil. In this study, a total of 15 bacterial strains were isolated from heavy metal polluted soil and were screened for their heavy metal tolerance and plant growth promotion potential. The most efficient strain was identified by 16S rRNA gene sequencing and was identified as Bacillus cereus. The isolate also showed the potential to solubilize phosphate and synthesize siderophore, phytohormones (indole acetic acid, cytokinin, and abscisic acid), and osmolyte (proline and sugar) in chromium (Cr+3) supplemented medium. The results of the present study showed that chromium stress has negative effects on seed germination and plant growth in B. nigra while inoculation of B. cereus improved plant growth and reduced chromium toxicity. The increase in seed germination percentage, shoot length, and root length was 28.07%, 35.86%, 19.11% while the fresh and dry biomass of the plant increased by 48.00% and 62.16%, respectively, as compared to the uninoculated/control plants. The photosynthetic pigments were also improved by bacterial inoculation as compared to untreated stress-exposed plants, i.e., increase in chlorophyll a, chlorophyll b, chlorophyll a + b, and carotenoid was d 25.94%, 10.65%, 20.35%, and 44.30%, respectively. Bacterial inoculation also resulted in osmotic adjustment (proline 8.76% and sugar 28.71%) and maintained the membrane stability (51.39%) which was also indicated by reduced malondialdehyde content (59.53% decrease). The antioxidant enzyme activities were also improved to 35.90% (superoxide dismutase), 59.61% (peroxide), and 33.33% (catalase) in inoculated stress-exposed plants as compared to the control plants. B. cereus inoculation also improved the uptake, bioaccumulation, and translocation of Cr in the plant. Data showed that B. cereus also increased Cr content in the root (2.71-fold) and shoot (4.01-fold), its bioaccumulation (2.71-fold in root and 4.03-fold in the shoot) and translocation (40%) was also high in B. nigra. The data revealed that B. cereus is a multifarious PGPR that efficiently tolerates heavy metal ions (Cr+3) and it can be used to enhance the growth and phytoextraction potential of B. nigra in heavy metal contaminated soil.


Assuntos
Bacillus cereus/fisiologia , Cromo/farmacocinética , Mostardeira/metabolismo , Mostardeira/microbiologia , Poluentes do Solo/farmacocinética , Antioxidantes/metabolismo , Bacillus cereus/genética , Biodegradação Ambiental , Clorofila/metabolismo , Genes Bacterianos , Mostardeira/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Rhizobiaceae/fisiologia , Microbiologia do Solo , Estresse Fisiológico , Simbiose
4.
J Trace Elem Med Biol ; 65: 126717, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33647737

RESUMO

BACKGROUND: Seafood present important advantages for human nutrition, but it can also accumulate high levels of toxic and potentially toxic elements. Culinary treatments could influence seafood chemical element content and element bioavailability. In this study, the influence of culinary treatments on the total concentration and on the bioavailability of Cd, Cr, Cu and Pb in shark, shrimp, squid, oyster, and scallop was assessed. METHODS: Boiling, frying, and sautéing with or without seasonings (salt, lemon juice and garlic) were evaluated. Total concentration and bioavailability of Cd, Cr, Cu and Pb in seafood after all these culinary treatments were compared with those in uncooked samples. Analytes were determined by triple-quadrupole inductively coupled plasma mass spectrometry (ICP-MS/MS). An alternative to express the results avoiding underestimated or overestimated values was proposed. RESULTS: The analytes concentration in seafood without culinary treatment varied from 0.0030 µg g-1 (shrimp) to 0.338 µg g-1 (oyster) for Cd; 0.010 µg g-1 (squid) to 0.036 µg g-1 (oyster) for Cr; 0.088 µg g-1 (scallop) to 8.63 µg g-1 (oyster) for Cu, and < 0.005 µg g-1 (shrimp, squid and oyster) to 0.020 µg g-1 (shark) for Pb. Only Cd (in scallop) was influenced by culinary treatments (reduction from 37 to 53 % after boiling, frying, and sautéing). Bioavailability percentage varied from 11% (oyster) for Cd; 18% (oyster) to 41% (shark) for Cr; 6% (shark) for Cu, and 8% (oyster) for Pb. Bioavailability percentage was not influenced by culinary treatments. CONCLUSION: Cadmium concentration was reduced in scallop after some culinary treatments (reduction o 37-53% after boiling, frying, and sautéing), but bioavailability percentage was not influenced. The employed analytical method was adequate for the purpose, presenting import results for food safety assessment about the influence of culinary treatments on metals concentration and bioavailability in seafood.


Assuntos
Cádmio/análise , Cromo/análise , Culinária , Cobre/análise , Chumbo/análise , Alimentos Marinhos/análise , Disponibilidade Biológica , Cádmio/farmacocinética , Cromo/farmacocinética , Cobre/farmacocinética , Contaminação de Alimentos/análise , Humanos , Chumbo/farmacocinética
5.
Environ Geochem Health ; 43(4): 1415-1426, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32737634

RESUMO

The present study aimed to elucidate the remediation potential of visibly dominant, naturally growing plants obtained from an early colonized fly ash dump near a coal-based thermal power station. The vegetation comprised of grasses like Saccharum spontaneum L., Cynodon dactylon (L.) Pers., herbs such as Tephrosia purpurea (L.) Pers., Sida rhombifolia L., Dysphania ambrosioides (L.) Mosyakin & Clemants, Chromolaena odorata (L.) King & H.E. Robins along with tree saplings Butea monosperma (Lam.) Taub. The growth of the vegetation improved the N and P content of the ash. Average metal concentrations (mg kg-1) in the ash samples and plants were in order Mn (345.1) > Zn (63.7) > Ni (29.3) > Cu (16.8) > Cr (9.9) > Pb (1.7) > Cd (0.41) and Cr (58.58) > Zn (52.74) > Mn (39.09) > Cu (10.71) > Ni (7.45) > Pb (5.52) > Cd (0.14), respectively. The plants showed fly ash dump phytostabilization potential and accumulated Cr (80.19-178.11 mg kg-1) above maximum allowable concentrations for plant tissues. Positive correlations were also obtained for metal concentration in plant roots versus fly ash. Saccharum spontaneum showed highest biomass and is the most efficient plant which can be used for the restoration of ash dumps.


Assuntos
Biodegradação Ambiental , Cinza de Carvão , Poluentes Ambientais/análise , Metais/análise , Plantas/química , Cromo/análise , Cromo/farmacocinética , Carvão Mineral , Cinza de Carvão/análise , Cinza de Carvão/química , Poluentes Ambientais/farmacocinética , Índia , Metais/farmacocinética , Nitrogênio/análise , Desenvolvimento Vegetal , Raízes de Plantas/química , Plantas/metabolismo , Especificidade da Espécie
6.
PLoS One ; 15(12): e0243032, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33270694

RESUMO

The ever-increasing industrial activities over the decades have generated high toxic metal such as chromium (Cr) that hampers the crop productivity. This study evaluated the effect of Cr on two chickpea (Cicer arietinum L.) varieties, Pusa 2085 and Pusa Green 112, in hydroponic and pot-grown conditions. First, growth parameters (seed germination, seedling growth, and biomass production) and physio-biochemical parameters (oxidative stress and the content of antioxidants and proline) were measured to evaluate the performance of both varieties grown hydroponically for 21 days at concentrations of 0, 30, 60, 90 and 120 µM Cr in the form of potassium dichromate (K2Cr2O7). In both varieties, significantly deleterious effects on germination and seedling growth parameters were observed at 90 and 120 µM, while growth was stimulated at 30 µM Cr. Significant increases in malondialdehyde and hydrogen peroxide content and electrolyte leakage demonstrated enhanced oxidative injury to seedlings caused by higher concentrations of Cr. Further, increasing concentrations of Cr positively correlated with increased proline content, superoxide dismutase activity, and peroxide content in leaves. There was also an increase in peroxisomal ascorbate peroxidase and catalase in the leaves of both varieties at lower Cr concentrations, whereas a steep decline was recorded at higher Cr concentrations. In the pot experiments conducted over two consecutive years, growth, yield, yield attributes, grain protein, and Cr uptake and accumulation were measured at different Cr concentrations. Pusa Green 112 showed a significant reduction in plant growth, chlorophyll content, grain protein, pod number, and grain yield per plant when compared with Pusa 2085. Overall, our results indicate that Pusa 2085 has a higher Cr tolerance than Pusa Green 112. Therefore, Pusa 2085 could be used to further elucidate the mechanisms of Cr tolerance in plants and in breeding programmes to produce Cr-resistant varieties.


Assuntos
Cromo/toxicidade , Cicer/efeitos dos fármacos , Cicer/fisiologia , Antioxidantes/metabolismo , Clorofila/metabolismo , Cromo/farmacocinética , Cicer/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Eletrólitos/metabolismo , Enzimas/metabolismo , Germinação/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Hidroponia , Malondialdeído/metabolismo , Nitrogênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Vegetais Comestíveis/metabolismo , Prolina/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Poluentes do Solo/toxicidade , Distribuição Tecidual
7.
PLoS One ; 15(8): e0237031, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32790698

RESUMO

Tomato is the most widespread vegetable crop in the world. In Italy, tomatoes are mainly cultivated in the South and in the Campania region, precisely in the area called Agro Nocerino-Sarnese. This flatland is affected by an extreme level of environmental degradation, especially related to the Sarno River, where concentrations of Potential Toxic Elements (PTEs) have been found to be higher than the maximum permitted level. The aim of this study was to determine the PTEs uptake by roots and their translocation to the aerial parts of the plants of two cultivars of tomatoes (Pomodoro Giallo and San Marzano Cirio 3). To the purpose, samples of the two cultivars were grown both in pots with experimentally contaminated soil containing: Cr or Cd or Pb at extremely high concentrations and in pots with uncontaminated soils (control). Additionally, the antioxidant properties of the cultivars selected grown on uncontaminated/contaminated soils were assessed. The results showed that Cd was the contaminant that most significantly interfered with the growth of both cultivars of tomato plants, whereas Pb caused lower phenotypical damage. Cd translocation from root to the organs of tomato plants was observed in both cultivars. Specifically, the total amount of Cd found in stems and leaves was higher in the Pomodoro Giallo (254.4 mg/kg dry weight) than in the San Marzano Cirio 3 (165.8 mg/kg dry weight). Cd was the only PTE found in the fruits of both cultivars, with values of 6.1 and 3.9 mg/kg dry weight of Pomodoro Giallo and San Marzano Cirio 3, respectively. The fruits of tomato plants grown in PTEs-contaminated soil showed inhibition or stimulations of the radical scavenging activity compared to the fruits grown in uncontaminated soil. This study highlighted that, despite the relatively high experimental concentrations of PTEs, their translocation to the edible part was comparatively low or absent.


Assuntos
Metais Pesados/farmacocinética , Poluentes do Solo/farmacocinética , Solanum lycopersicum/metabolismo , Bioacumulação , Transporte Biológico Ativo , Cádmio/farmacocinética , Cádmio/toxicidade , Cromo/farmacocinética , Cromo/toxicidade , Sequestradores de Radicais Livres/metabolismo , Radicais Livres/metabolismo , Itália , Chumbo/farmacocinética , Chumbo/toxicidade , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Metais Pesados/toxicidade , Poluentes do Solo/toxicidade , Distribuição Tecidual
8.
Environ Toxicol Pharmacol ; 80: 103465, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32771667

RESUMO

The present study investigated the accumulation and depuration effects of hexavalent chromium (Cr6+) in ten tissues (gills, intestines, liver, kidney, blood, heart, bladder, spleen, skin and muscle) of the bighead carp (Aristichthys nobilis). Fish were exposed to graded levels of waterborne Cr6+ (0.01, 0.1, 1 and 5 mg/L) for 4, 7 and 14 days, and subsequently transferred to Cr6+-free water for 14 days. After 14-day exposure, a dose-dependent increase of Cr6+ has been observed in most tissues. While after 14-day depuration, Cr6+ contents were significantly decreased in various tissues except in kidney and spleen where Cr6+ contents significantly increased at the group of 5 mg/L. Considering that Cr6+ highly accumulated in gills, intestines, liver and kidney, the oxidative damage of Cr6+ on the four tissues were further investigated and found that the antioxidant response to Cr6+ were organ-specific. The results in this study indicated that a 14-day period is effective for accumulation and depuration of Cr6+ in bighead carp and there was no health risk of fish muscle consumption. Additionally, the delayed efflux of Cr6+ in the fish kidney and spleen indicates that high importance should be attached to them when evaluating the toxic effects and risk assessments of Cr6+.


Assuntos
Carpas/metabolismo , Cromo/farmacocinética , Cromo/toxicidade , Poluentes Químicos da Água/farmacocinética , Poluentes Químicos da Água/toxicidade , Adulto , Animais , Criança , Exposição Dietética , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Glutationa/metabolismo , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Malondialdeído/metabolismo , Medição de Risco , Distribuição Tecidual
9.
J Trace Elem Med Biol ; 62: 126562, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32570008

RESUMO

BACKGROUND: Hexavalent chromium [Cr(VI)] is a human lung carcinogen and global marine pollutant. High Cr concentrations, resembling the ones observed in occupationally exposed workers, have been observed in fin whales (Balaenoptera physalus) in the Gulf of Maine. This outcome suggests Cr might be disrupting the health of fin whale populations. Indeed, Cr in acute (24 h) exposure does cause toxicity in fin whale cells. However, human cell culture data indicate prolonged exposures (120 h) induce a higher amount of toxicity compared to 24 h exposure due to an inhibition of homologous recombination repair. However, whether prolonged exposure causes similar outcomes in fin whale cells is unknown. OBJECTIVE: Due to the importance of assessing prolonged exposure toxicity, this study focuses on characterizing acute and prolonged exposure of Cr(VI) in male and female fin whale cells. METHODS: Cytotoxicity was measured by the clonogenic assay, also known as colony forming assay, which measures the ability of cells to proliferate and form colonies after the treatment. DNA double strand breaks were analyzed by neutral comet assay. Clastogenicity was measured using the chromosome aberration assay. Intracellular Cr levels were measured with Graphite Furnace Atomic Absorption Spectrometry (GFAAS) with Syngistix Software. RESULTS: In this study, we demonstrate that particulate Cr(VI) induces cytotoxicity and genotoxicity in a treatment-dependent manner after 24 h and 120 h exposures. Cytotoxicity levels were generally low with relative survival above 64 %. DNA double strand break data and chromosome aberration data were elevated after a 24 h exposure, but decreased after a 120 h exposure. While cytotoxicity was similar after 24 h and 120 h exposures, less DNA double strand breaks and chromosomal instability occurred with prolonged exposure. CONCLUSION: Particulate Cr(VI) is cytotoxic and genotoxic to fin whale cells after acute and prolonged exposures. The reduction of genotoxicity we have observed after 120 h exposure may be partly explained by lower intracellular Cr levels after 120 h. However, the decrease in intracellular levels is not reflected by a similar decrease in chromosome aberrations suggesting other mechanisms may be at play. Male fin whale cells appear to be more susceptible to the genotoxic effects of particulate Cr(VI) while female cells are less susceptible possibly due to increased cell death of damaged cells, but more work is needed to clarify if this outcome reflects a sex difference or interindividual variability. Overall, the study shows particulate Cr(VI) does induce toxicity at both acute and prolonged exposures in fin whales cells indicating Cr(VI) exposure is a health risk for this species.


Assuntos
Cromo/toxicidade , Baleia Comum , Poluentes Químicos da Água/toxicidade , Animais , Células Cultivadas , Cromatos/toxicidade , Cromo/farmacocinética , Aberrações Cromossômicas , Ensaio Cometa , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Exposição Ambiental , Feminino , Masculino , Testes de Mutagenicidade/métodos , Testes de Toxicidade Aguda , Compostos de Zinco/toxicidade
10.
Ecotoxicol Environ Saf ; 201: 110869, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32585490

RESUMO

Chromium (Cr) contamination is a potential threat to the agricultural soil. Arbuscular mycorrhizal (AM) fungi have potential to remediate the heavy metal polluted soils. It was hypothesized that Cr phytoremediation potentiality of AM fungi could be enhanced in combination with saprophytic filamentous fungi and soil amendment. Tomato plants were raised in Cr polluted technosol amended with compost, inoculated with mixed-culture of AM fungi and Aspergillus terreus. It was found that, triple treatment (soil amendment with compost along with AM fungi and A. terreus inoculation) enhanced biomass production (up to 315%), fruit setting (up to 49%), photosynthetic pigments (up to 214%) and carbohydrate content (up to 400%) whereas reduced the proline (up to 76.5%), catalase (up to 34.2%), peroxidase (up to 58.9%) and root membrane permeability (up to 74.2%). The effect of AM fungi with compost amendment was additive, while it was synergistic with A. terreus. AM fungi enhanced the extraction of Cr from the substrate, but retained in the mycorrhizal root, thereby reduced the translocation into shoot and in fruit, Cr translocation was undetectable. At the end of experiment Cr content in the substrate was significantly decreased (up to 37.9%). Soil amendment with compost along with AM fungi and A. terreus inoculation can be used for reclamation of Cr polluted soils at field scale.


Assuntos
Aspergillus/fisiologia , Cromo/farmacocinética , Micorrizas/fisiologia , Poluentes do Solo/farmacocinética , Solanum lycopersicum/metabolismo , Biodegradação Ambiental , Biomassa , Metabolismo dos Carboidratos , Catalase/metabolismo , Compostagem , Solanum lycopersicum/enzimologia , Peroxidase/metabolismo , Raízes de Plantas/metabolismo , Prolina/metabolismo
11.
Environ Geochem Health ; 42(12): 4213-4231, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32495026

RESUMO

Usage of native plant species for traditional medicine or nutritional supplement is a popular practice among various cultures. But consumption of plants growing on polluted soil can cause serious human health hazard due to bioaccumulation of toxic heavy metals. Present study deals with the ecological and human health impact of heavy metals, in six native plant species with ethnobotanical significance growing at the largest chromite mine of India. Exchangeable, oxidizable, reducible and residual fractions of the metals in plant rhizosphere were analyzed. Only 2-6% of total Cr (270-330 mg/kg) and Ni (150-190 mg/kg) at the mining site is bioavailable. Cd showed highest bioavailability (~ 60%) in mining site posing very high ecological risk (1055-5291) followed by Ni (1297-2124) and Cr (309-1105). The heavy metals in the shoot of the targeted plants were about 0.7 to 80 times higher than the standard limit as per Indian statutory body. The total hazard quotient (THQ) by the consumption of plants growing in mining region was very high (> 1) and varied from 2.6 to 5.9 in adult and 0.6-1.3 in children, while in non-mining region the THQ of same plants indicates low risk (< 1). This study indicates THQ (adult) in the order of, Euphorbia hirta (5.9) > Calotropis procera (4.9) > Argemone mexicana (3.6) > Vernonia cinerea (3.5) > Pteridium latiusculum (3.4) > Tridax procumbens (2.6) through consumption pathway growing in mine soil. This study concludes that consumption of plants growing in heavy metal polluted soil should be avoided due to their potential health hazard.


Assuntos
Cromo/toxicidade , Metais Pesados/toxicidade , Mineração , Plantas/metabolismo , Poluentes do Solo/toxicidade , Adulto , Disponibilidade Biológica , Criança , Cromo/farmacocinética , Exposição Ambiental , Humanos , Índia , Metais Pesados/farmacocinética , Rizosfera , Solo , Poluentes do Solo/farmacocinética
12.
Ecotoxicol Environ Saf ; 192: 110303, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32061991

RESUMO

Chromium (Cr) concentration has been increasing substantially in the environment due to industrial and anthropogenic factors. Plants can absorb Cr and undergo unrestrained oxidation cascades, resulting in cell injury. The ameliorative role of biogenic copper nanoparticles to relieve wheat plants from Cr stress by supporting their growth is still unclear. The present work aims at the biosynthesis and characterization of copper nanoparticles (CuNPs) from a native Klebsiella pneumoniae strain, followed by assessment of wheat growth and physiological responses to CuNPs mixed in Cr-rich soil. The taxonomic rank of K. pneumoniae SN35 was established by the 16 S rRNA gene sequence analysis. The properties of biogenic CuNPs were elucidated by using UV-vis spectroscopy, FTIR, XRD, SEM, and TEM. It was found that 19.01-47.47 nm spherical shaped CuNPs were stabilized by different functional groups produced extracellularly by the strain SN35. The XRD data revealed the crystalline nature of CuNPs as a face-centered cubic structure. Different concentrations of CuNPs (0, 25, 50 and 100 mg kg-1 of soil) were added into the soil mixed with 3.5 mg kg-1 K2Cr2O7 and the pots were placed in a growth chamber for 30 days. The results revealed that the CuNPs, at 25 and 50 mg kg-1 of soil, augmented plant growth, biomass, and cellular antioxidants contents, whereas decreased the reactive oxygen species and Cr translocation from soil to roots and shoots as compared to control plants. Overall, the results revealed that the soil amendment of CuNPs could immobilize the Cr in the soil to prevent its translocation to the upper plant parts and support wheat growth by relieving cellular oxidative stress.


Assuntos
Cromo/farmacocinética , Cobre/química , Klebsiella pneumoniae/metabolismo , Nanopartículas Metálicas/química , Poluentes do Solo/farmacocinética , Triticum/crescimento & desenvolvimento , Antioxidantes/metabolismo , Disponibilidade Biológica , Biomassa , Cromo/química , Recuperação e Remediação Ambiental , Klebsiella pneumoniae/classificação , Klebsiella pneumoniae/genética , Estresse Oxidativo , Poluentes do Solo/química , Triticum/metabolismo
13.
Ecotoxicol Environ Saf ; 193: 110345, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32092578

RESUMO

Many areas of the world are affected simultaneously by salinity and heavy metal pollution. Halophytes are considered as useful candidates in remediation of such soils due to their ability to withstand both osmotic stress and ion toxicity deriving from high salt concentrations. Quinoa (Chenopodium quinoa Willd) is a halophyte with a high resistance to abiotic stresses (drought, salinity, frost), but its capacity to cope with heavy metals has not yet been fully investigated. In this pot experiment, we investigated phytoextraction capacity, effects on nutrient levels (P and Fe), and changes in gene expression in response to application of Cr(III) in quinoa plants grown on saline or non-saline soil. Plants were exposed for three weeks to 500 mg kg-1 soil of Cr(NO3)3·9H2O either in the presence or absence of 150 mM NaCl. Results show that plants were able tolerate this soil concentration of Cr(III); the metal was mainly accumulated in roots where it reached the highest concentration (ca. 2.6 mg g-1 DW) in the presence of NaCl. On saline soil, foliar Na concentration was significantly reduced by Cr(III). Phosphorus translocation to leaves was reduced in the presence of Cr(III), while Fe accumulation was enhanced by treatment with NaCl alone. A real-time RT-qPCR analysis was conducted on genes encoding for sulfate, iron, and phosphate transporters, a phytochelatin, a metallothionein, glutathione synthetase, a dehydrin, Hsp70, and enzymes responsible for the biosynthesis of proline (P5CS), glycine betaine (BADH), tocopherols (TAT), and phenolic compounds (PAL). Cr(III), and especially Cr(III)+NaCl, affected transcript levels of most of the investigated genes, indicating that tolerance to Cr is associated with changes in phosphorus and sulfur allocation, and activation of stress-protective molecules. Moderately saline conditions, in most cases, enhanced this response, suggesting that the halophytism of quinoa could contribute to prime the plants to respond to chromium stress.


Assuntos
Chenopodium quinoa/efeitos dos fármacos , Chenopodium quinoa/metabolismo , Cromo/toxicidade , Salinidade , Poluentes do Solo/toxicidade , Biodegradação Ambiental , Transporte Biológico/efeitos dos fármacos , Chenopodium quinoa/genética , Cromo/farmacocinética , Expressão Gênica/efeitos dos fármacos , Íons/metabolismo , Ferro/metabolismo , Chumbo/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Prolina/biossíntese , Plantas Tolerantes a Sal/efeitos dos fármacos , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Sódio/metabolismo , Cloreto de Sódio/farmacologia , Poluentes do Solo/farmacocinética , Estresse Fisiológico , Enxofre/metabolismo , Tocoferóis/metabolismo
14.
Ecotoxicol Environ Saf ; 193: 110357, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32105946

RESUMO

Trace metal elements are significant stressors in urban areas. Their harmful effects on physiological parameters are demonstrated, but current laboratory studies are not representative of wild chronic exposure to a trace metal cocktail. Calcium can reduce the accumulation and toxicity of several metals, but soil acidification in cities leads to a decrease in bioavailability of this element. The objective of this study was to investigate the accumulation and toxicity of a trace metal cocktail representative of urban exposure on passerine birds, and test the importance of calcium availability on these toxic effects. We exposed zebra finches (Taeniopygia guttata) to a cocktail of seven metals and one metalloid in drinking water, with or without calcium supplementation. We monitored the concentration of metals in the blood and feathers, and their effects on oxidative status and telomere length. The metal cocktail led to higher concentration of all elements in the feathers, and of arsenic and lead in the blood. Birds with a higher concentration of cadmium, arsenic and lead in the feathers had shorter telomeres, but no impact of the cocktail was detected on oxidative status. Birds of the 'calcium' group and the 'calcium and metal' group accumulated higher concentrations of zinc, chromium and nickel in feathers. The 'calcium and metal' group also accumulated lower concentrations of arsenic and lead in feathers compared to the 'metal' group. Our results suggest that chronic exposure to a cocktail of metals at low concentrations has deleterious effects on birds, which can be limited through calcium intake.


Assuntos
Cálcio/farmacologia , Metais Pesados/toxicidade , Animais , Arsênio/sangue , Arsênio/farmacocinética , Cádmio/farmacocinética , Cálcio/administração & dosagem , Cromo/farmacocinética , Cidades , Suplementos Nutricionais , Plumas/química , Tentilhões , Chumbo/sangue , Chumbo/farmacocinética , Masculino , Metais Pesados/sangue , Níquel/farmacocinética , Encurtamento do Telômero/efeitos dos fármacos , Oligoelementos/farmacocinética , Oligoelementos/toxicidade , Zinco/análise
15.
Nanoscale ; 12(3): 1967-1974, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31909403

RESUMO

The ultimate goal of in vivo imaging is to provide safe tools to probe the inside of a body in order to obtain pathological information, monitor activities, and examine disease progression or regression. In this context zinc gallate doped with chromium III (ZGO) nanoparticles with persistent luminescence properties have been previously developed, and their biodistribution as well as in vitro toxicity were evaluated. However, to date, nothing is known about their potential transformations in biological media, which may hinder their biomedical applications. In order to know if these nanoparticles could degrade, the present work consists of studying their fate over time depending on both their coating and the aqueous media in which they are dispersed. ZGO nanoparticles have been dispersed in three different aqueous solutions for up to 90 days and characterized by numerous techniques. Among the evaluated dispersion media, Artificial Lysosomal Fluid (ALF) mimicking the intracellular lysosome environment elicited significant degradation of ZGO nanoparticles. The chelating agents present in ALF have proved to play a major role in the degradation of the ZGO, by stabilizing the nanoparticles and increasing the contact. An important time decrease of the luminescence properties has also been observed, which correlated with the release of ions from ZGO nanoparticles as well as their decreasing size. This information is valuable since it indicates, for the first time, the long-term degradation of persistent luminescent nanoprobes in an in vivo like model medium. Therefore, possible elimination of the imaging probes after in vivo preclinical applications could be foreseen.


Assuntos
Cromo , Ácido Gálico , Medições Luminescentes , Lisossomos/metabolismo , Nanopartículas/química , Zinco , Cromo/química , Cromo/farmacocinética , Cromo/farmacologia , Ácido Gálico/química , Ácido Gálico/farmacocinética , Ácido Gálico/farmacologia , Humanos , Zinco/química , Zinco/farmacocinética , Zinco/farmacologia
16.
Chemosphere ; 239: 124760, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31518923

RESUMO

Plant growth and yield are adversely affected by the uptake of toxic hexavalent chromium (Cr(VI)) from soil. The present study describes a facile technique to minimize the uptake of Cr(VI) by chickpea (Cicer arietinum) plant from soil using microporous activated carbon microfiber (ACF). Simultaneously, nano-sized carbon nanofibers (CNFs), grown over the ACF substrate, are used as an efficient carrier of the Cu micronutrient from soil to root, shoot and leaf of the plants. Adsorption, seed germination and plant growth experiments are performed in Cr-stressed medium. The ACF, used as the adsorbent for Cr(VI) in metal-stressed soil (100 mg Cr kg-1 of soil) shows the metal loading of ∼23 mg g-1. Cr(VI) up to 50 mg L-1 concentration causes no stress during germination of chickpea seeds in Murashige and Skoog (MS) medium. A dose of 500 mg-mixture (treatment) per kg-soil increases root and shoot lengths by 52 and 11%, respectively than the control, during plant growth in the metal-stressed soil, attributed to an effective translocation of Cu-CNF through plant cells. Whereas Cr uptake by plant decrease to ∼46%, Cu uptake increase up to ∼120% in comparison to control by the mixture treatment. Protein and chlorophyll contents also significantly increased (*p < 0.05) with the application of treatment. The data clearly show that the mixture of ACF and Cu-CNF can be successfully used for the simultaneous scavenging of Cr(VI) from soil by adsorption over ACF and increased uptake of Cu by plants using the CNFs as the micronutrient carrier.


Assuntos
Cromo/farmacocinética , Cicer/crescimento & desenvolvimento , Nanofibras/química , Poluentes do Solo/farmacocinética , Adsorção , Carvão Vegetal/química , Clorofila/metabolismo , Cromo/isolamento & purificação , Cicer/efeitos dos fármacos , Cicer/metabolismo , Cobre/farmacocinética , Recuperação e Remediação Ambiental/métodos , Germinação , Folhas de Planta , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Solo/química , Poluentes do Solo/isolamento & purificação
17.
Chemosphere ; 238: 124663, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31472343

RESUMO

Ochrobactrum anthropi DE2010 is a microorganism isolated from Ebro Delta microbial mats and able to resist high doses of chromium(III) due to its capacity to tolerate, absorb and accumulate this metal. The effect of this pollutant on O. anthropi DE2010 has been studied assessing changes in viability and biomass, sorption yields and removal efficiencies. Furthermore, and for the first time, its capacity for immobilizing Cr(III) from culture media was tested by a combination of High Angle Annular Dark Field (HAADF) Scanning Transmission Electron Microscopy (STEM) imaging coupled to Energy Dispersive X-ray spectroscopy (EDX). The results showed that O. anthropi DE2010 was grown optimally at 0-2 mM Cr(III). On the other hand, from 2 to 10 mM Cr(III) microbial plate counts, growth rates, cell viability, and biomass decreased while extracellular polymeric substances (EPS) production increases. Furthermore, this bacterium had a great ability to remove Cr(III) at 10 mM (q = 950.00 mg g-1) immobilizing it mostly in bright polyphosphate inclusions and secondarily on the cellular surface at the EPS level. Based on these results, O. anthropi DE2010 could be considered as a potential agent for bioremediation in Cr(III) contaminated environments.


Assuntos
Biodegradação Ambiental , Cromo/farmacocinética , Ochrobactrum anthropi/metabolismo , Biomassa , Cromo/metabolismo , Viabilidade Microbiana , Ochrobactrum anthropi/crescimento & desenvolvimento , Espectrometria por Raios X
18.
J Radiol Prot ; 40(1): 19-39, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31834868

RESUMO

Chromium exists in several oxidation states, with the trivalent state (Cr(III)) being the dominant naturally occurring form. Chromium in other oxidation states tends to be converted to the trivalent oxide in the natural environment and in biological systems. Chromium(III) has been shown to be an essential nutrient for humans and several non-human species. Chromium(VI), the second most stable form of chromium, is an important environmental contaminant that is mostly of industrial origin and is associated with lung cancer and nose tumours in chromium workers. This paper proposes a biokinetic model for chromium that addresses the distinctive behaviours of Cr(III) and Cr(VI) following uptake to blood of an adult human. The model is based on biokinetic data derived from relatively short-term studies involving administration of chromium tracers to adult human subjects or laboratory animals, supplemented with data on the long-term distribution of chromium in adult humans as estimated from autopsy measurements. The model is part of a comprehensive update of biokinetic models of the International Commission on Radiological Protection, used to project or evaluate radiation doses from occupational intake of radionuclides.


Assuntos
Bioensaio/métodos , Cromo/farmacocinética , Absorção de Radiação , Adulto , Animais , Cromo/química , Exposição Ambiental , Humanos , Taxa de Depuração Metabólica , Modelos Biológicos , Oxirredução , Doses de Radiação , Distribuição Tecidual
19.
Part Fibre Toxicol ; 16(1): 33, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31451117

RESUMO

BACKGROUND: Allergic reactions to tattoos are amongst the most common side effects occurring with this permanent deposition of pigments into the dermal skin layer. The characterization of such pigments and their distribution has been investigated in recent decades. The health impact of tattoo equipment on the extensive number of people with inked skin has been the focus of neither research nor medical diagnostics. Although tattoo needles contain high amounts of sensitizing elements like nickel (Ni) and chromium (Cr), their influence on metal deposition in skin has never been investigated. RESULTS: Here, we report the deposition of nano- and micrometer sized tattoo needle wear particles in human skin that translocate to lymph nodes. Usually tattoo needles contain nickel (6-8%) and chromium (15-20%) both of which prompt a high rate of sensitization in the general population. As verified in pig skin, wear significantly increased upon tattooing with the suspected abrasive titanium dioxide white when compared to carbon black pigment. Additionally, scanning electron microscopy of the tattoo needle revealed a high wear after tattooing with ink containing titanium dioxide. The investigation of a skin biopsy obtained from a nickel sensitized patient with type IV allergy toward a tattoo showed both wear particles and iron pigments contaminated with nickel. CONCLUSION: Previously, the virtually inevitable nickel contamination of iron pigments was suspected to be responsible for nickel-driven tattoo allergies. The evidence from our study clearly points to an additional entry of nickel to both skin and lymph nodes originating from tattoo needle wear with an as yet to be assessed impact on tattoo allergy formation and systemic sensitization.


Assuntos
Cromo/farmacocinética , Corantes/toxicidade , Hipersensibilidade/etiologia , Linfonodos/efeitos dos fármacos , Níquel/farmacocinética , Pele/efeitos dos fármacos , Tatuagem/efeitos adversos , Animais , Corantes/farmacocinética , Humanos , Hipersensibilidade/imunologia , Hipersensibilidade/metabolismo , Técnicas In Vitro , Tinta , Linfonodos/imunologia , Linfonodos/metabolismo , Nanopartículas/metabolismo , Nanopartículas/toxicidade , Agulhas , Tamanho da Partícula , Pele/imunologia , Pele/metabolismo , Suínos , Distribuição Tecidual , Titânio/farmacocinética , Titânio/toxicidade
20.
Food Chem ; 298: 125032, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31260968

RESUMO

A dietary fibre prepared from sugarcane stalk was compared with psyllium husk and wheat dextrin. In contrast to the other dietary fibres, sugarcane fibre was found to contain significant amounts of insoluble dietary fibre (73-86%), lignin (18.66-20.23%), and rare minerals such as chromium (0.67-2.54 mg/100 g) and manganese (1.07-2.34 mg/100 g). Analysis of the ethanol extract also detected compounds with antioxidant activity. Characterisation of five sugarcane fibres prepared from selected strains, harvest periods (growth or storage phase), and processing conditions showed these factors influenced the final composition. Furthermore, using in vitro digestion, we found that potassium, magnesium, chromium, and zinc in were bioaccessible in sugarcane samples. Also, sodium was shown to bind to the sugarcane fibre potentially indicating bile salt binding activity. Results from this study support the use of sugarcane as a source of dietary fibre in functional foods.


Assuntos
Dextrinas/química , Fibras na Dieta/análise , Plantago/química , Saccharum/química , Triticum/química , Antioxidantes/análise , Cromo/análise , Cromo/farmacocinética , Dextrinas/análise , Fibras na Dieta/metabolismo , Indústria de Processamento de Alimentos/métodos , Lignina/análise , Metais/análise , Metais/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...